Гликозилированный гемоглобин (HbA1c)
HbA1 – гликозилированный гемоглобин – связанный с молекулами глюкозы гемоглобин,...
Медицина / Диагностика / Диагностика (статья)
Общий анализ крови является самым востребованным лабораторным исследованием – он отражает широкий спектр разных патологий, в результате которых количество клеток крови отклоняется от нормы. Общий анализ крови – набор тестов, а не один анализ, включающий исследование каждого из трех форменных элементов крови: эритроцитов, тромбоцитов (кровяных пластинок) и лейкоцитов. В этой статье рассмотрены исследования эритроцитов и некоторые другие анализы, которые к ним относятся и влияют на функции эритроцитов. Исследования других форменных элементов крови – лейкоцитов и тромбоцитов – описаны в статье «Анализ крови: Лейкоциты» и «Анализ системы свертывания крови».
Лабораторные исследования оценки функции эритроцитов используют прежде всего для выявления анемии (см таблицу 1) и определения причин ее возникновения. В других статьях рассмотрены значения и дифференциальный подсчет лейкоцитов, а также подсчет тромбоцитов (анализ свертывающей системы крови).
Показатель |
Измерение |
Единица измерения |
Количество эритроцитов |
Концентрация эритроцитов в крови |
n × 1012/л |
Гемоглобин |
Концентрация гемоглобина в крови* |
г/100 мл (г/дл) |
Гематокрит |
Доля эритроцитов в цельной крови |
% |
Средний объем эритроцитов |
Средний объем эритроцитов |
Фемтолитр |
Средняя концентрация гемоглобина в эритроците |
Средняя концентрация гемоглобина в эритроците |
г/100 мл (г/дл) |
Широта распределения эритроцитов |
Вариабельность эритроцитов по объему |
% |
Мазок крови. Кровь тонким слоем распределяют на предметном стекле и окрашивают. Полученный препарат исследуют под микроскопом. Любые изменения размеров и формы эритроцитов детально описывают. Мазки крови исследуют в том случае, если анализы, приведенные в этой таблице, отклоняются от пределов нормы. |
||
* - в отечественных лабораториях для описания измерений используют единицы СИ, согласно которым уровень гемоглобина в крови измеряется в г/л. Для перерасчета значений, выраженных в г/дл, в единицы СИ, полученный результат нужно умножить на коэффициент 10 (например, показатель 14 г/дл соответствует значению 140 г/л). Отметим, что при интерпретации результатов анализа нужно учитывать половые различия референсных значений |
Эритроциты самые многочисленные из трех типов форменных элементов крови – их количество в 100 раз превышает количество тромбоцитов и в 1000 раз – лейкоцитов. Процесс формирования эритроцитов – эритропоэз (разновидность процесса кроветворения – гемопоэза) – происходит в костном мозге. И если в детском возрасте костный мозг, в котором происходит гемопоэз, содержится практически во всех костях, то у взрослых гемопоэз ограничен костным мозгом тазовых костей, эпифизами длинных костей (например, кости плеча и бедер), лопаток, позвонков, ребер и грудины.
Все клетки крови формируются из полипотентных (плюрипотентных) стволовых клеток костного мозга, которые потенциально могут преобразоваться в клетки эритроцитов, тромбоцитов и лейкоцитов. Пронормобласт (проэритробласт) – самая примитивная среди полипотентных клеток костного мозга из которой образуется эритроцит. Формирование происходит путем деления и дифференцировки, проходя три стадии – нормобласт, ретикулоцит и зрелый эритроцит (рисунок 1). То есть, эритропоэз – процесс развития от стволовой клетки до зрелого эритроцита, который характеризуется:
Рисунок 1. Развитие клеток крови
Последняя стадия формирования (из ретикулоцита в эритроцит) происходит не только в костном мозге, а и в периферической крови. Как правило, ретикулоциты составляют 1-2% от общего количества эритроцитов крови. В норме ни одна другая ранняя форма эритроцитов в крови не содержится.
Жизнь эритроцитов длится примерно 100-120 дней. Эти клетки постоянно обновляются. Так, в костном мозге воспроизводится в среднем 2,3 млн эритроцитов в секунду. Процесс образования эритроцитов регулирует эритропоэтин (гемопоэтин) – гормон, секретируемый почечными клетками и клетками печени (почечная секреция эритропоэтина преобладает в зрелом возрасте, а печеночная – в эмбриональном и перинатальном периоде). При снижении концентрации кислорода в крови почки выделяют эритропоэтин, который с током крови транспортируется в косный мозг, где стимулирует процесс формирования эритроцитов. Когда уровень эритроцитов в крови достигает физиологического (необходимого организму), повышается концентрация кислорода в крови и, как следствие, секреция эритропоэтина в почках снижается (см рисунок 2).
Рисунок 2. Регуляция продукции эритроцитов
Основная функция зрелого эритроцита – транспорт кислорода от легких к тканям и транспорт углекислого газа от тканей к легким. В эритроцитах содержится белок гемоглобин – главное звено в процессе газообмена. Процесс образования гемоглобина проходит в эритроцитах на стадии их раннего развития в костном мозге и полностью завершается к моменту полного созревания эритроцитов. Зрелая клетка эритроцита (ретикулоцита) покидает костный мозг уже с полным набором молекул гемоглобина (250-300 млн).
Зрелый эритроцит часто описывают как двояковогнутый диск, представляющий собой сжатую сферу с вдавлениями по бокам. Такая форма позволяет при имеющемся объеме создавать наибольшую площадь поверхности, тем самым обеспечивая максимальную возможность для газообмена. Диаметр эритроцита составляет в среднем 8 мкм, что в 2 раза превышает просвет самых мелких кровеносных сосудов, через которые он должен проходить. Способность мембраны эритроцита к деформации, позволяет изменять форму клетки так, что она может проходить через микроскопические сосуды в легочных альвеолах и тканях, где, собственно, и происходит процесс газообмена.
Поскольку клетка эритроцита не имеет ядра и не содержит других внутриклеточных органелл, ее можно рассматривать как заполненную гемоглобином мембранную сумку, способную к деформации.
Гемоглобин – это пигмент эритроцитов, благодаря которому кровь имеет красный цвет. Основная функция гемоглобина – доставка кислорода к тканям, а также транспорт углекислого газа и ионов водорода в легкие. Молекула гемоглобина состоит из четырех протомеров – полипептидных цепей, состоящих из аминокислот. Протомеры формируют глобиновую (белковую) часть молекулы. К каждой из четырех глобиновых субъединиц присоединена группа гема, в центре которой находится атом железа в форме Fe2+ (см рисунок 3).
Рисунок 3. Схема строения молекулы оскигемоглобина у взрослых
Если структура гема всегда одинаковая, то в глобиновых субъединицах последовательность аминокислот незначительно варьирует. Глобиновые цепи имеют четыре разновидности – α (альфа), β (бета), γ (гамма) и δ (дельта). У взрослого человека около 97% гемоглобина представлено гемоглобином А (HbA), который состоит из двух субъединиц – двух α-глобиновых и двух β-глобиновых цепей. Остальное количество гемоглобина (примерно 3%) представлено гемоглобином А2 (HbA2), состоящего из двух α-глобиновых и двух δ-глобиновых цепей. В период внутриутробного развития и у грудных детей в первые несколько месяцев жизни образуется только фетальный гемоглобин (HbF), состоящий из двух α-глобиновых и двух γ-глобиновых субъединиц.
Структура гемоглобина представляет большой интерес. Ни сегодняшний день известно много наследственных патологий, при которых происходят нарушения процесса формирования и структуры гемоглобина. Эти патологии получили общее название – гемоглобинопатия. Большая часть гемоглобинопатий встречается редко, но две из них – анемия Кули (талассемия) и серповидноклеточная анемия (серповидноклеточная болезнь) – привлекают особое внимание специалистов.
Атом железа, содержащийся в каждом геме, определяет свойство гемоглобина связывать кислород – кислород формирует слабую неполярную связь с железом, в результате чего образуется оксигемоглобин. Если все четыре гема заняты кислородом, молекула гемоглобина считается насыщенной. Степень насыщения гемоглобина зависит, в первую очередь, от содержания кислорода в крови (см рисунок 4).
Рисунок 4. Взаимосвязь между содержанием кислорода в крови (PO2) и кислородом, который может объединиться с гемоглобином (% насыщения гемоглобина)
На графике видно, что степень насыщения гемоглобина кислородом повышается, если PO2 (парциальное давление кислорода в крови) увеличивается. Физиологическое значение этой взаимосвязи находится в основе транспортной функции гемоглобина. Попадая в легкие с вдыхаемым воздухом, кислород попадает через легочные альвеолы в кровь, при этом PO2 высокое (примерно 95 мм рт ст). При высоком PO2 восприимчивость гемоглобина к кислороду повышается, в результате чего происходит быстрое (в течение нескольких секунд) насыщение гемоглобина кислородом (до 100%). В тканях организма PO2 относительно низкое (примерно 40 мм рт ст), поэтому восприимчивость гемоглобина к ксилороду снижена. При этом кислород высвобождается из гемоглобина и диффундирует из эритроцитов в клетки, где принимает участие в клеточном метаболизме.
Если транспорт кислорода из легких в ткани практически полностью зависит от гемоглобина, содержащегося в эритроцитах, то процесс транспорта углекислого газа (диоксида углерода) от тканей к легким гораздо сложнее. В отличие от кислорода, углекислый газ растворяется в плазме крови. В результате большая часть углекислого газа транспортируется в растворенном виде, остальное количество – эритроцитами.
Образованный в результате клеточного метаболизма углекислый газ из тканей диффундирует в кровоток. Часть CO2 растворяется в плазме, часть диффундирует в эритроциты. В эритроцитах часть CO2 вступает в связь с освободившемся от кислорода гемоглобином, в результате чего образуется карбогемоглобин (HbCO), другая часть CO2 вступает в соединение с содержащейся в цитоплазме эритроцитов водой, образуя угольную кислоту (H2CO3) (эта реакция катализируется ферментом карбоангидразой). Угольная кислота диссоциирует на ионы водорода (количество ионов водорода определяется гемоглобином) и бикарбонат-ионы, которые диффундируют из эритроцитов в плазму крови. В легких эти клеточные реакции проходят в обратном направлении – углекислый газ, диффундируя из эритроцитов, проникает вместе с растворенным в плазме крови углекислым газом в легочные альвеолы для дальнейшего выведения из организма вместе с выдыхаемым воздухом.
Роль гемоглобина в процессе дыхания также рассмотрены в статье «Физиология дыхания (газообмен в легких)».
Продолжительность жизни эритроцита составляет в среднем 100-120 дней, после чего клетка погибает и удаляется из крови ретикулоэндотелиальной системой при прохождении крови через селезенку, печень и костный мозг. Когда кровь попадает в эти органы, мембрана эритроцитов разрушается, в результате чего высвобождается гемоглобин, который распадается на элементы – гем и глобин (см рисунок 5).
Рисунок 5. Распад и выведение гемоглобина
Образованное в результате распада железо гема участвует в процессе формирования новых эритроцитов, а глобиновые цепи распадаются до аминокислот, которые пополняют общий запас аминокислот организма. Остатки гема (после удаления железа), преобразуются в билирубин (желтый пигмент), который с током крови попадает в печень для метаболизма и выведения из организма (с желчью билирубин попадает в кишечник и выводится с фекалиями); небольшая часть билирубина выделяется в виде метаболитов (уробилиногена и уробилина) с мочой.
В здоровом организме скорость образования эритроцитов в костном мозге соответствует скорости гемолиза в клетках ретикулоэндотелиальной системы. Таким образом поддерживается постоянное количество эритроцитов в крови, которого достаточно для полноценного обеспечения кислородом всех тканей и органов.
Для проведения анализа на форменные элементы крови пациент не нуждается в специальной подготовке.
Требований к времени забора крови для проведения этого анализа нет. Забор крови рекомендуется проводить в удобное для доставки в лабораторию время.
Для определения количества эритроцитов кровь перед отправкой в лабораторию не рекомендуется хранить более 12 часов. Общий анализ крови – одно из исследований, которое при необходимости можно проводить срочно (в большинстве лабораторий есть дежурные лаборанты, которые работают круглосуточно и могут сделать этот анализ в любое время).
Для проведения общего анализа крови проводить забор венозной крови рекомендуется без применения жгута. Если при заборе образца крови используется жгут, накладывать его можно не более чем на 1-2 минуты до момента взятия крови. В случае, когда забор венозной крови затруднен (у пациентов с «плохими» венами или маленьких детей), для анализа можно брать капиллярную кровь.
Кровь для определения форменных элементов крови нужно собирать в пробирку с антикоагулянтом К+-ЭДТА (предупреждает процесс свертывания крови, тем самым сохраняя структуру клеток крови).
Для анализа форменных элементов необходимо 2,5 мл венозной крови или 0,5 мл капиллярной крови (в педиатрической практике). Как правило, пробирки для забора общего анализа крови имеют специальную отметку, до которой их следует наполнять. Правильное наполнение пробирки дает возможность соблюсти необходимую пропорцию крови и антикоагулянта. То есть, для проведения точного анализа важно, чтобы объем крови в пробирке соответствовал количеству коагулянта, которое рассчитано на конкретный объем крови. Сразу после забора кровь в пробирке нужно правильно перемешать с антикоагулянтом, плавно переворачивая пробирку (встряхивание или резкие движения пробиркой могут вызвать гемолиз, что приведет к ложным результатам анализа).
Эритроциты |
Мужчины |
4,5-6,5 × 1012/л |
Женщины |
3,9-5,6 × 1012/л |
|
Новорожденные |
3,5-6,7 × 1012/л |
|
Дети |
4,1-5,3 × 1012/л |
|
Гемоглобин |
Мужчины |
13,5-17,5 г/дл |
Женщины |
11,5-15,5 г/дл |
|
Новорожденные |
14,0-24,0 г/л |
|
Дети |
11,0-14,0 г/л |
|
Важно!!! Некоторые лаборатории концентрацию гемоглобина выражают в граммах на литр (г/л). Для перевода концентрации гемоглобина из выражения г/л в г/дл, указанный результат нужно разделить на 10. То есть, показатель гемоглобина 135 г/л соответствует значению 13,5 г/дл |
||
Гематокрит |
Мужчины |
40-52 % |
Женщины |
36-48 % |
|
Средний объем эритроцитов |
Взрослые |
80-95 фл |
Новорожденные |
100-135 фл |
|
Дети |
71-88 фл |
|
Средняя концентрация гемоглобина в эритроцитах |
20-35 г/дл |
|
Широта распределения эритроцитов |
10-15 % |
Гемоглобин: < 7,0 или > 20,0 г/дл
Гематокрит: < 20% или > 60%
Нормоцитоз – средний размер эритроцитов в норме.
Микроцитоз – средний размер эритроцитов ниже нормы.
Макроцитоз – средний размер эритроцитов больше нормы.
Анизоцитоз – размеры эритроцитов варьируют.
Пойкилоциоз – форма эритроцитов варьирует.
Нормохромия – эритроциты нормально окрашены, что указывает на нормальное содержание гемоглобина.
Гипохромия – эритроциты слабо окрашены (содержание гемоглобина в эритроцитах ниже нормы).
Анемия (малокровие) – патологическое состояние, характеризующееся совокупностью симптомов, вызванных нарушением доставки кислорода к тканям по причине снижения уровня эритроцитов и/или гемоглобина в крови. Причин развития анемии много, поэтому ее считают не самостоятельной патологией, а признаком какого-либо другого заболевания, которое необходимо диагностировать, чтобы провести успешное лечение.
В независимости от причин возникновения, анемия всегда сопровождается снижением уровня гемоглобина в крови. Диагноз анемия у взрослых ставят в случае, если уровень гемоглобина в крови ниже 11,5 г/дл у женщин и 13,5 г/дл у мужчин. У детей уровень гемоглобина ниже, чем у взрослых, поэтому им ставят диагноз при уровне гемоглобина ниже 11,0 г/дл. Чем ниже уровень гемоглобина в крови, тем более тяжелая степень анемии. Если показатель уровня гемоглобина в крови находится в пределах референсных значений, анемию можно исключать.
Снижение уровня эритроцитов и низкий гематокрит также являются признаками анемии, несмотря на то, что степень этого снижения зависит не только от тяжести заболевания, но и от причины его развития. Основным патологическим эффектом анемии считается ограничение доставки кислорода к тканям. Однако степень проявления симптомов анемии зависит от следующих факторов:
Анемии, независимо от причин их развития, имеют несколько общих признаков, большинство из которых возникают по причине гипоксии (снижения оксигенации тканей). Некоторые возникающие при анемии симптомы отражают попытку организма компенсировать дефицит кислорода в тканях. Главные признаки анемии:
Отсутствие симптомов вовсе не исключает анемию: многие анемии средней степени тяжести не проявляются какими-либо заметными симптомами, особенно если анемия медленно развивается. Среди пожилых людей, страдающих тяжелой анемией, есть асимптоматичные пациенты.
Если анемию и степень ее тяжести можно диагностировать с помощью анализа на содержание гемоглобина, эритроцитов и гематокрита, эти исследования не позволяют установить причину ее развития. Наиболее распространенными причинами развития анемии являются:
Причину анемии помогают определить микроскопическое исследование эритроцитов и индекс эритроцитов – средний объем эритроцита и средняя концентрация гемоглобина в эритроците. Значение этих индексов дают возможность отнести анемию к одной из трех основных групп:
Микроциарные анемии развиваются по причине дефицита железа и талассемии (наследственного заболевания). У больных анемией при хроническом заболевании (АХЗ) могут тоже могут проявляться признаки микроцитарной анемии, однако это нетипично, поскольку у большинства пациентов с АХЗ она нормоцитарная.
Нормоцитарная анемия развивается в результате острой потери крови, хронической почечной недостаточности (из-за снижения продукции эритропоэтина), гемолитической анемии, злокачественных патологий костного мозга (лейкозы и др), апластической анемии (при поражении стволовых клеток костного мозга).
Макроцитарные анемии возникают вследствие дефицита фолиевой кислоты (витамина B9) и/или цианокобаламина (витамина B12).
С целью дальнейшей дифференциации причин анемии внутри этих трех групп, следует определить широту распределения эритроцитов. Например, в случае дефицита железа показатель широты распределения эритроцитов будет высоким, а при талассемии – нормальным. При оценке широты распределения эритроцитов можно определять нормоцитарные анемии разной этиологии. Так, анемия при хроническом заболевании, характеризуется нормальным значением показателя широты распределения эритроцита, а при гемолитической анемии – высоким.
Таким образом, с помощью определения среднего объема эритроцитов и широты распределения, можно значительно сузить круг возможных причин развития анемии.
Микроскопическое исследование окрашенных мазков крови также применяют для определения причин анемии – размер, форма и окраска эритроцитов могут помочь установить диагноз. Например, при серповидноклеточной анемии (генетически обусловленный дефект структуры гемоглобина) эритроциты имеют характерную серповидную форму (откуда, собственно, и произошло название этой анемии). Относительно небольшие размеры эритроцитов, которые слабо окрашены (по причине аномально низкого содержания в них гемоглобина), указывают на возможный дефицит железа, а большие (как правило овальной формы) эритроциты – на дефицит витамина B9- и/или B12. Многие анемии сопровождаются характерными изменениями формы эритроцитов. Например, анемия при отравлении свинцом характеризуется бозофильной зернистостью эритроцитов, а при малярии в эритроцитах больного обнаруживаются малярийные паразиты.
Полицитемия – состояние, противоположное анемии, при котором наблюдается аномально большое количество клеток крови (высокий уровень эритроцитов и гемоглобина). Поскольку показатель гематокрита зависит от количества эритроцитов, он тоже увеличивается. Полицитемия может возникать в качестве ответа на какие-либо патологические или физиологические состояния, при которых в крови содержится меньше кислорода, чем в нормальном состоянии. При дефиците кислорода в почках увеличивается секреция эритропоэтина, в результате повышается производство эритроцитов – развивается вторичная полицитемия. К основным причинам развития вторичной полицитемии относят:
Истинная (первичная) полицитемия – злокачественная патология костного мозга, характеризующаяся нарушением пролиферации стволовых клеток, что приводит к чрезмерной продукции эритроцитов (также может повышаться количество тромбоцитов и лейкоцитов).
При значительном повышении концентрации эритроцитов вязкость крови увеличивается. При этом у пациента могут наблюдаться некоторые симптомы: повышение артериального давления, головная боль и др).
Концентрация эритроцитов в единице объема крови, уровень гемоглобина и гематокрит в значительной степени зависят от гидратации организма. В случае обезвоживания (дегидратации) объем плазмы крови уменьшается, что приводит к росту концентрации этих показателей. И наоборот, при гипергидратации (когда человек получает очень большой объем жидкости), концентрация этих показателей снижается. Тем не менее, абсолютное количество эритроцитов и гемоглобина не меняются. При интерпретации результатов анализа эти факторы (дегидратацию и гипергидратацию) необходимо учитывать.
Во время беременности увеличивается объем плазмы крови, поэтому часто беременность сопровождается незначительным снижением показателей уровня гемоглобина, эритроцитов и гематокрита, даже при условии нормального абсолютного количества эритроцитов и гемоглобина. Если у беременной незначительно снижен уровень гемоглобина, это не обязательно анемия. То есть, во время беременности анемию не диагностируют, если показатель содержания гемоглобина выше 10 г/л.
Уровень гемоглобина также не может выступать в качестве критерия оценки для определения анемии при кровотечении (острой кровопотере). Потеря крови сопровождается потерей как эритроцитов (в которых содержится гемоглобин), так и плазмы. Поэтому показатели уровня эритроцитов, концентрации гемоглобина и гематокрит могут оставаться в пределах нормы (по крайней мере в начале). Анемия в этом случае становится очевидной после проведения заместительной терапии жидкостями, которые вводят пациенту с целью восстановления объема крови.
Важно отметить, что средний объем эритроцитов может повышаться у пациентов с нормальным содержанием гемоглобина, то есть без анемии. Изолированное увеличение объема эритроцитов может быть вызвано злоупотреблением алкоголем или циррозом печени (в обоих случаях у пациента может быть анемия). Изолированное увеличение объема эритроцитов у людей злоупотребляющих алкоголем, рассматривается как подтверждение этого факта.
Ретикулоциты – незрелые эритроциты. Поскольку этот показатель имеет ограниченное клиническое значение, а также по некоторым техническим причинам, подсчет количества ретикулоцитов многие лаборатории не включают в перечень общего анализа крови. Тем не менее, это исследование некоторые лаборатории включают в перечень общего анализа крови или проводят его отдельно. Анализ на содержание ретикулоцитов проводят с целью диагностики анемии. Требования к забору крови для проведения анализа такие-же, как и для исследования эритроцитов.
Уровень ретикулоцитов в крови: 20-80 × 109/л
Некоторые лаборатории выражают количество эритроцитов в процентном соотношении к количеству эритроцитов. В этом случае референсное занчение – 0,5-2,0%.
Клиническое значение анализа на уровень ретикулоцитов основано на том, что при анемии возникает физиологический ответ организма – повышение продукции эритроцитов в костном мозге. При этом в кровь попадает большое количество ретикулоцитов (незрелых эритроцитов), количество которых и определяется в лаборатории. Этот физиологический ответ на анемию называют ретикулоцитоз.
Таким образом, если у пациента с анемией наблюдается ретикулоцитоз, это говорит о том, что анемия не вызвана нарушением процесса образования эритроцитов, а причиной этого состояния может быть либо кровопотеря, либо гемолиз (разрушение эритроцитов). Если же при анемии у пациента наблюдается сниженное количество ретикулоцитов, причиной ее развития может быть патология костного мозга или дефицит элементов питания, необходимых для формирования эритроцитов (железа, витаминов).
Анализ на содержание ретикулоцитов применяют для мониторинга лечения анемии. Так, при железодефицитной анемии прием препаратов железа сопровождается ретикулоцитозом, который проявляется на 5-7 дней терапии. В данном случае ретикулоцитоз является главным объективным признаком того, что препараты железа действуют эффективно – в костном мозге формируется больше эритроцитов. Если же ретикулоцитоз при приеме препаратов железа не наблюдается, это признак того, что причина развития анемии – не дефицит железа (нужно искать другую причину), - или пациент просто не принимает назначенные препараты.
HbA1 – гликозилированный гемоглобин – связанный с молекулами глюкозы гемоглобин,...
Анемия развивается в результате снижения количество гемоглобина и эритроцитов в крови. У детей...
Анемия – заболевание связанное со снижением уровня гемоглобина в крови (снижение уровня...
Анемия - снижение количества гемоглобина и эритроцитов в крови. Существует несколько видов...
У новорожденных в первые дни жизни значительно меняется состав крови. Сильно повышается...
анализы, БАД, биологическая медицина, витамины, гастроэнтерология, гигиена, гинекология, гомеопатия, дерматология, диагностика, диетология, заболевания, иммунология, инфекционные заболевания, инфекция, исследования, кардиология, кожа, косметика, красота, лекарственные растения, лечение, лицо, неврология, обследование, оздоровление, онкология, ортопедия, педиатрия, питание, пищеварительная система, поведение, похудение, препараты, продукты, профилактика, процедура, психология, пульмонология, рак, реабилитация, сердечно-сосудистая система, ССС, тело, терапия, травматология, уход, фитотерапия, хирургия, эндокринология
Показать все теги
Комменатрии к новости